Q1) Find the HCF of $\mathbf{2 n}+\mathbf{1 3}$ and $\mathbf{n + 7}$, where \mathbf{n} is a natural number.

1) 1
2) $n+6$
3) $n+7$
4) Depends on n

As ' n ' is a natural number so, substitute any natural number in place of n.
Put $\mathrm{n}=1$. HCF of $2 \mathrm{n}+13$ and $\mathrm{n}+7=$ HCF of 15 and $8=1$
When $\mathrm{n}=1$, then option 2 and 3 are eliminated. So, answer is either option 1 or option 4.
Now, put another value of n. Say $n=2$. HCF of $2 n+13$ and $n+7=$ HCF of 17 and $9=1$
As the answer does not depend on the value of ' n ' so, option 1 is the answer.
Q2) If $\frac{a}{b}=\frac{1}{3}, \frac{b}{c}=2, \frac{c}{d}=\frac{1}{2}, \frac{d}{e}=3, \frac{e}{f}=\frac{1}{4}$, then what is the value of $\frac{a b c}{d e f}$.

1) $3 / 8$
2) $27 / 8$
3) $1 / 4$
4) $27 / 4$
$\frac{a}{b}=\frac{1}{3}=\frac{2}{6}, \frac{b}{c}=2=\frac{6}{3}, \frac{c}{d}=\frac{1}{2}=\frac{3}{6}, \frac{d}{e}=3=\frac{6}{2}, \frac{e}{f}=\frac{1}{4}=\frac{2}{8}$
So, $\mathrm{a}=2, \mathrm{~b}=6, \mathrm{c}=3, \mathrm{~d}=6, \mathrm{e}=2, \mathrm{f}=8$ i.e. $\frac{a b c}{d e f}=\frac{3}{8}$
Q3) If $a+b+c=0$ the value of $\frac{a^{4}+b^{4}+c^{4}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$ is
5) 2
6) 3
7) 4
8) 5

In this question, $a+b+c=0$.
Put $a=1, b=0$ so $c=-1$

$$
\frac{a^{4}+b^{4}+c^{4}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}=\frac{1+0+1}{1}=2
$$

Q4) If $x=a^{2}-b c, y=b^{2}-c a$ and $z=c^{2}-a b$, then the value of $\frac{(a+b+c)(x+y+z)}{a x+b y+c z}$ is

1) 3
2) 2
3) 1
4) 0

Say $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=0$
Then $\mathrm{x}=1, \mathrm{y}=4$ and $\mathrm{z}=-2$

$$
\frac{(a+b+c)(x+y+z)}{a x+b y+c z}=\frac{(1+2+0)(1+4-2)}{1+8}=\frac{3 \times 3}{9}=1
$$

Q5) If $a+b+c=3, a^{2}+b^{2}+c^{2}=5$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ where a, b, c are non-zero, then the value of abc is

1) 1
2) $3 / 4$
3) $3 / 2$
4) 2

In this question, we have 3 conditions. So, whenever we have multiple conditions then we need to follow full method

$$
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)
$$

$9=5+2(a b+b c+c a)$ i.e. $a b+b c+c a=2$
Dividing both sides by abc we get, $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2}{a b c}=1$
So, $a b c=2$
Q6) If $a+b+c=\mathbf{0}$ then one of the roots of the equation $a x^{2}-b x+c=0$ is

1) $-\frac{c}{a}$
2) $\frac{c}{a}$
3) $\frac{b-a}{a}$
4) $\frac{b}{a}$

In this question, $a+b+c=0$
Put $a=1, b=2$ so, $c=-3$. The equation becomes $x^{2}-2 x-3=0$
On solving, $x=-1,3$
Option 1: $-\frac{c}{a}=3$ (Possible)
As we are using substitution method so we need to check other options also.
Option 2: $\frac{c}{a}=-3$ (Not Possible)
Option 3: $\frac{b-a}{a}=1$ (Not Possible)
Option 4: $\frac{b}{a}=2$ (Not Possible)
Q7) If $a b+b c+c a=0$ then the value of $\frac{1}{a^{2}-b c}+\frac{1}{b^{2}-c a}+\frac{1}{c^{2}-a b}$ is

1) 3
2) 3abc
3) abc
4) 0

In this question, $a b+b c+c a=0$
Put $\mathrm{a}=1=\mathrm{b}$ then $\mathrm{c}=-\frac{1}{2}$

$$
\frac{1}{a^{2}-b c}+\frac{1}{b^{2}-c a}+\frac{1}{c^{2}-a b}=0
$$

Q8) If $x=a+\sqrt{a^{2}-1}$ then $x^{3}+\frac{1}{x^{3}}$ is equal to

1) $3 a^{3}-3 a$
2) $8 a^{3}-6 a$
3) $8 a^{3}+6 a$
4) $3 a^{3}+3 a$

Put $\mathrm{a}=1$ then $\mathrm{x}=1$

$$
x^{3}+\frac{1}{x^{3}}=2
$$

Put $\mathrm{a}=1$ in options. Option 2 gives the answer as ' 2 '.

Q9) Find the sum of ' \mathbf{n} ' terms in the series 7+77+777+7777+. \qquad n terms

1) $\frac{7}{81}\left(10^{n+1}-9 n+10\right)$
2) $\frac{7}{81}\left(10^{n+1}-9 n-10\right)$
3) $\frac{7}{9}\left(10^{n+1}-9 n-10\right)$
4) $\frac{7}{9}\left(10^{n+1}-9 n+10\right)$

Put $\mathrm{n}=1$ i.e. sum of 1 term of the series. So, required answer is 7 .
Put $\mathrm{n}=1$ in options.
Option 1: $\frac{7}{81}\left(10^{n+1}-9 n+10\right)=\frac{707}{81}$
Option 2: $\frac{7}{81}\left(10^{n+1}-9 n-10\right)=7$
Option 3: $\frac{7}{9}\left(10^{n+1}-9 n-10\right)=63$
Option 4: $\frac{7}{9}\left(10^{n+1}-9 n+10\right)=\frac{707}{9}$
Hence, option 2 is the answer.

Q10) Find the value of $4 \log x+4 \log x^{2 \times 2}+4 \log x^{3 \times 3} \ldots \ldots+4 \log x^{k \times k}$

1) $\frac{\left(k^{2}+k\right)(2 k+1)}{6}$
2) $\frac{k(k+1)}{6}$
3) $(k-1) \log x$
4) $\frac{2}{3}\left(k^{2}+k\right)(2 k+1) \log x$

Put $\mathrm{k}=1$
$4 \log x+4 \log x^{2 \times 2}+4 \log x^{3 \times 3} \ldots \ldots+4 \log x^{k \times k}=4 \log x\{$ when $\mathrm{k}=1\}$
Put $\mathrm{k}=1$ in options. Option 4 , gives the answer as ' $4 \log x$ '

Q11) What is the sum of ' n ' terms in the series
$\log m+\log \left(\frac{m^{2}}{n}\right)+\log \left(\frac{m^{3}}{n^{2}}\right)+\log \left(\frac{m^{4}}{n^{3}}\right)+\cdots \ldots \ldots$?
$\begin{array}{llll}\text { 1) } \log \left[\frac{n^{n-1}}{m^{n+1}}\right]^{\frac{n}{2}} & \text { 2) } \log \left[\frac{m^{m}}{n^{n}}\right]^{\frac{n}{2}} & \text { 3) } \log \left[\frac{m^{1-n}}{n^{1-m}}\right]^{\frac{n}{2}} & \text { 4) } \log \left[\frac{m^{n+1}}{n^{n-1}}\right]^{\frac{n}{2}}\end{array}$
Put $\mathrm{n}=1$ i.e. sum of 1 term of the series. So, required answer is $\log m$. Put $\mathrm{n}=1$ in options. Option 4 gives the result as $\log m$.

